# Chemosensoren-

## Vergleich zweier Sensorsysteme in der optischen Sensorik zur Quantifizierung ternärer Gemische mit chemometrischen Methoden

## Georg Belge, Frank Dieterle, Günter Gauglitz

Institut für Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tübingen, F.R.G.

#### **Motivation**

- Untersuchung des Ansprechverhaltens des mikroporösen Polymers Makrolon
- Vergleich der Ergebnisse des Weißlicht-Setups mit denen des 4 Lambda-Set-ups:

### Messprinzipien: RIfS-Reflektometrische Interferenzspektroskopie

Weißlicht-Set-up

4 Lambda-Set-up



Photodiode



Glas-

transducer

- Schichtdickenabhängigkeit
- Vergleich der Sensoransprechzeiten
- Vergleich Sorption/Desorption

Polymerfilmdicken:

Sensorarray: Makrolon 80, 120 und 160 nm sowie PUT 250 nm 4 Lambda-Set-up: Makrolon 325 nm

- Glätten der Sensorsignale zur Verbesserung der Kalibration
- Auswertung mit Neuronalen Netzen (ANN)

#### Zeitaufgelöste Messungen

Messkurvenprofil am Beispiel der Einzelanalyten Methanol Ethanol (nd)/ (nd)<sub>0</sub> (e<sup>-3</sup>) 250 0.500 0.750 1.



#### Variablenselektion:



- Variablenselektion mit wachsenden Neuronalen Netzen zur Bestimmung der optimalen Messzeitpunkte zur Auswertung der Messsignale
- Variablenselektion zeigt, dass die Messzeitpunkte zu Beginn der



#### Auswertung der RIfS - Messungen

- Kontinuierliche Messung des Produktes aus Schichtdicke d und Brechungsindex *n* optischer Schichtsysteme
- Schichtdickenänderung durch molekulare Wechselwirkungen
- Quellung sensitiver Polymere
- zeitaufgelöstes Messverfahren: 50 Messzeitpunkte pro Sensor



- Sensorantwort vor und nach der Glättung (raw/smoothed), Beispiel 80 nm Schichtdicke des Makrolons
- Das Glätten verursacht eine Veränderung der effektive Sensorantwort
- Konzentrationsbereich von 0 bis 10 Vol.-%

Sorption und zu Beginn der Desoprtion am wichtigsten ist

- Variablenselektion zeigt, dass bereits für zwei Sensoren die optimale Kalibration erreicht wird
- Kalibration mit den optimalen Messzeitpunkten der 80 nm und 160 nm dicken Makrolonschicht

#### Multivariate Datenanalyse der ternären Analytgemische

Gegenüberstellung der Ergebnisse der einzelnen Sensoren beider Sensor-Set-ups

|                 | Validierdaten |       |       |           |       |       |
|-----------------|---------------|-------|-------|-----------|-------|-------|
| Sensorarray     | ungeglättet   |       |       | geglättet |       |       |
| 80 nm Makrolon  | 28.05         | 31.24 | 19.65 | 25.86     | 22.09 | 10.58 |
| 160 nm Makrolon | 9.81          | 13.77 | 11.79 | 9.91      | 14.44 | 14.45 |
| 250 nm PUT      | 34.49         | 43.55 | 12.53 | 45.67     | 42.39 | 23.89 |
| 4 Lambda-Set-up | 22.43         | 24.77 | 20.87 | 17.15     | 25.2  | 21.32 |



- Der Kalibrationsdatensatz bestand aus 216 Messungen von 36 verschiedenen Gemischzusammensetzungen
- Der Testdatensatz bestand aus 125 Messungen und war **unabhängig** vom Kalibrationsdatensatz
- Vorhersage der Testdaten mit einem optimierten Netzwerk, gleichzusetzen mit Realmessungen
- Der rel. RMSE gibt den tatsächlichen Vorhersagefehler bezogen auf die Konzentration der Testdaten an

Sensorarray:

 optimiertes Netzwerk bestehend aus 7 Input, 5 Hidden und 1 Output Neuron

#### Zusammenfassung

- Glätten der Sensorsignale führt für dünne Schichten zur Verbesserung der Sensorantwort
- Variablenselektion zeigt, dass eine kürzere Exposition der Analyten möglicht ist

Die Zeit der Sorption und Desorption sowie die Zeit zwischen den Messsignalen wird kürzer

• Evaluierung von 2 Sensorsignalen, die der 80 und 160 nm Schichtdicke

• gezeigte Ergebnisse stammen aus den ungeglätteten Daten

4 Lambda-Set-up:

• optimiertes Netzwerk bestehend aus 13 Input-, 5 Hidden- und 1 Output-Neuron

 dickere Polymerschicht benötigt längere Zeit zur Desorption, dies führt zu größeren Fehlern

gezeigte Ergebnisse stammen aus den ungeglätteten Daten

Mehr Messungen möglich und damit bessere Kalibrierung

Ergebnisse des Einkanal-4 Lambda-Set-ups sind vergleichbar mit den einzelnen Sensoren des Weißlicht-Set-up

**Eberhard Karls** UNIVERSITÄT TÜBINGEN